Research Interests: My research interests lie broadly in optimization, the theory of computation, and the design and analysis of algorithms. [pdf] Roy Frostig, Rong Ge, Sham M. Kakade, Aaron Sidford. Oral Presentation for Misspecification in Prediction Problems and Robustness via Improper Learning. . With Yosheb Getachew, Yujia Jin, Aaron Sidford, and Kevin Tian (2023). F+s9H In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on. It was released on november 10, 2017. Publications and Preprints. when do tulips bloom in maryland; indo pacific region upsc COLT, 2022. arXiv | code | conference pdf (alphabetical authorship), Annie Marsden, John Duchi and Gregory Valiant, Misspecification in Prediction Problems and Robustness via Improper Learning. However, even restarting can be a hard task here. with Yair Carmon, Arun Jambulapati, Qijia Jiang, Yin Tat Lee, Aaron Sidford and Kevin Tian Source: appliancesonline.com.au. Try again later. I am broadly interested in optimization problems, sometimes in the intersection with machine learning [pdf] [poster] Office: 380-T " Geometric median in nearly linear time ." In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, Pp. O! Their, This "Cited by" count includes citations to the following articles in Scholar. UGTCS By using this site, you agree to its use of cookies. With Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Zhao Song, and Di Wang. The Complexity of Infinite-Horizon General-Sum Stochastic Games, With Yujia Jin, Vidya Muthukumar, Aaron Sidford, To appear in Innovations in Theoretical Computer Science (ITCS 2023) (arXiv), Optimal and Adaptive Monteiro-Svaiter Acceleration, With Yair Carmon, Danielle Hausler, Arun Jambulapati, and Yujia Jin, To appear in Advances in Neural Information Processing Systems (NeurIPS 2022) (arXiv), On the Efficient Implementation of High Accuracy Optimality of Profile Maximum Likelihood, With Moses Charikar, Zhihao Jiang, and Kirankumar Shiragur, Improved Lower Bounds for Submodular Function Minimization, With Deeparnab Chakrabarty, Andrei Graur, and Haotian Jiang, In Symposium on Foundations of Computer Science (FOCS 2022) (arXiv), RECAPP: Crafting a More Efficient Catalyst for Convex Optimization, With Yair Carmon, Arun Jambulapati, and Yujia Jin, International Conference on Machine Learning (ICML 2022) (arXiv), Efficient Convex Optimization Requires Superlinear Memory, With Annie Marsden, Vatsal Sharan, and Gregory Valiant, Conference on Learning Theory (COLT 2022), Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Method, Conference on Learning Theory (COLT 2022) (arXiv), Big-Step-Little-Step: Efficient Gradient Methods for Objectives with Multiple Scales, With Jonathan A. Kelner, Annie Marsden, Vatsal Sharan, Gregory Valiant, and Honglin Yuan, Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching, With Arun Jambulapati, Yujia Jin, and Kevin Tian, International Colloquium on Automata, Languages and Programming (ICALP 2022) (arXiv), Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary, With Aaron Bernstein, Jan van den Brand, Maximilian Probst, Danupon Nanongkai, Thatchaphol Saranurak, and He Sun, Faster Maxflow via Improved Dynamic Spectral Vertex Sparsifiers, With Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, and Richard Peng, In Symposium on Theory of Computing (STOC 2022) (arXiv), Semi-Streaming Bipartite Matching in Fewer Passes and Optimal Space, With Sepehr Assadi, Arun Jambulapati, Yujia Jin, and Kevin Tian, In Symposium on Discrete Algorithms (SODA 2022) (arXiv), Algorithmic trade-offs for girth approximation in undirected graphs, With Avi Kadria, Liam Roditty, Virginia Vassilevska Williams, and Uri Zwick, In Symposium on Discrete Algorithms (SODA 2022), Computing Lewis Weights to High Precision, With Maryam Fazel, Yin Tat Lee, and Swati Padmanabhan, With Hilal Asi, Yair Carmon, Arun Jambulapati, and Yujia Jin, In Advances in Neural Information Processing Systems (NeurIPS 2021) (arXiv), Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss, In Conference on Learning Theory (COLT 2021) (arXiv), The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications for Profile Maximum Likelihood, With Nima Anari, Moses Charikar, and Kirankumar Shiragur, Towards Tight Bounds on the Sample Complexity of Average-reward MDPs, In International Conference on Machine Learning (ICML 2021) (arXiv), Minimum cost flows, MDPs, and 1-regression in nearly linear time for dense instances, With Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, and Zhao Song, Di Wang, In Symposium on Theory of Computing (STOC 2021) (arXiv), Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers, In Symposium on Discrete Algorithms (SODA 2021) (arXiv), Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration, In Innovations in Theoretical Computer Science (ITCS 2021) (arXiv), Acceleration with a Ball Optimization Oracle, With Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, and Kevin Tian, In Conference on Neural Information Processing Systems (NeurIPS 2020), Instance Based Approximations to Profile Maximum Likelihood, In Conference on Neural Information Processing Systems (NeurIPS 2020) (arXiv), Large-Scale Methods for Distributionally Robust Optimization, With Daniel Levy*, Yair Carmon*, and John C. Duch (* denotes equal contribution), High-precision Estimation of Random Walks in Small Space, With AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, and Salil P. Vadhan, In Symposium on Foundations of Computer Science (FOCS 2020) (arXiv), Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs, With Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Zhao Song, and Di Wang, In Symposium on Foundations of Computer Science (FOCS 2020), With Yair Carmon, Yujia Jin, and Kevin Tian, Unit Capacity Maxflow in Almost $O(m^{4/3})$ Time, Invited to the special issue (arXiv before merge)), Solving Discounted Stochastic Two-Player Games with Near-Optimal Time and Sample Complexity, In International Conference on Artificial Intelligence and Statistics (AISTATS 2020) (arXiv), Efficiently Solving MDPs with Stochastic Mirror Descent, In International Conference on Machine Learning (ICML 2020) (arXiv), Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond, With Oliver Hinder and Nimit Sharad Sohoni, In Conference on Learning Theory (COLT 2020) (arXiv), Solving Tall Dense Linear Programs in Nearly Linear Time, With Jan van den Brand, Yin Tat Lee, and Zhao Song, In Symposium on Theory of Computing (STOC 2020). [pdf] Aaron Sidford is an assistant professor in the departments of Management Science and Engineering and Computer Science at Stanford University. With Rong Ge, Chi Jin, Sham M. Kakade, and Praneeth Netrapalli. Interior Point Methods for Nearly Linear Time Algorithms | ISL 9-21. publications by categories in reversed chronological order. [c7] Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, Kevin Tian: Private Convex Optimization in General Norms. I am generally interested in algorithms and learning theory, particularly developing algorithms for machine learning with provable guarantees. We provide a generic technique for constructing families of submodular functions to obtain lower bounds for submodular function minimization (SFM). International Colloquium on Automata, Languages, and Programming (ICALP), 2022, Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, David P. Woodruff Innovations in Theoretical Computer Science (ITCS) 2018. ", Applied Math at Fudan I regularly advise Stanford students from a variety of departments. I am a fifth-and-final-year PhD student in the Department of Management Science and Engineering at Stanford in Google Scholar; Probability on trees and . I am Conference Publications 2023 The Complexity of Infinite-Horizon General-Sum Stochastic Games With Yujia Jin, Vidya Muthukumar, Aaron Sidford To appear in Innovations in Theoretical Computer Science (ITCS 2023) (arXiv) 2022 Optimal and Adaptive Monteiro-Svaiter Acceleration With Yair Carmon, Simple MAP inference via low-rank relaxations. The ones marked, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 424-433, SIAM Journal on Optimization 28 (2), 1751-1772, Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 1049-1065, 2013 ieee 54th annual symposium on foundations of computer science, 147-156, Proceedings of the forty-fifth annual ACM symposium on Theory of computing, MB Cohen, YT Lee, C Musco, C Musco, R Peng, A Sidford, Proceedings of the 2015 Conference on Innovations in Theoretical Computer, Advances in Neural Information Processing Systems 31, M Kapralov, YT Lee, CN Musco, CP Musco, A Sidford, SIAM Journal on Computing 46 (1), 456-477, P Jain, S Kakade, R Kidambi, P Netrapalli, A Sidford, MB Cohen, YT Lee, G Miller, J Pachocki, A Sidford, Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, International Conference on Machine Learning, 2540-2548, P Jain, SM Kakade, R Kidambi, P Netrapalli, A Sidford, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 230-249, Mathematical Programming 184 (1-2), 71-120, P Jain, C Jin, SM Kakade, P Netrapalli, A Sidford, International conference on machine learning, 654-663, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete, D Garber, E Hazan, C Jin, SM Kakade, C Musco, P Netrapalli, A Sidford, New articles related to this author's research, Path finding methods for linear programming: Solving linear programs in o (vrank) iterations and faster algorithms for maximum flow, Accelerated methods for nonconvex optimization, An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations, A faster cutting plane method and its implications for combinatorial and convex optimization, Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems, A simple, combinatorial algorithm for solving SDD systems in nearly-linear time, Uniform sampling for matrix approximation, Near-optimal time and sample complexities for solving Markov decision processes with a generative model, Single pass spectral sparsification in dynamic streams, Parallelizing stochastic gradient descent for least squares regression: mini-batching, averaging, and model misspecification, Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization, Accelerating stochastic gradient descent for least squares regression, Efficient inverse maintenance and faster algorithms for linear programming, Lower bounds for finding stationary points I, Streaming pca: Matching matrix bernstein and near-optimal finite sample guarantees for ojas algorithm, Convex Until Proven Guilty: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions, Competing with the empirical risk minimizer in a single pass, Variance reduced value iteration and faster algorithms for solving Markov decision processes, Robust shift-and-invert preconditioning: Faster and more sample efficient algorithms for eigenvector computation. Another research focus are optimization algorithms. Anup B. Rao - Google Scholar Faster energy maximization for faster maximum flow. %PDF-1.4 In International Conference on Machine Learning (ICML 2016). [pdf] [talk] Microsoft Research Faculty Fellowship 2020: Researchers in academia at Articles Cited by Public access. If you see any typos or issues, feel free to email me. with Kevin Tian and Aaron Sidford We also provide two . Here are some lecture notes that I have written over the years. [pdf] [talk] [poster] With Jack Murtagh, Omer Reingold, and Salil P. Vadhan. [pdf] [poster] Mail Code. missouri noodling association president cnn. 2017. I am a fifth year Ph.D. student in Computer Science at Stanford University co-advised by Gregory Valiant and John Duchi. I graduated with a PhD from Princeton University in 2018. 2022 - current Assistant Professor, Georgia Institute of Technology (Georgia Tech) 2022 Visiting researcher, Max Planck Institute for Informatics. [pdf] In Innovations in Theoretical Computer Science (ITCS 2018) (arXiv), Derandomization Beyond Connectivity: Undirected Laplacian Systems in Nearly Logarithmic Space. ", "Streaming matching (and optimal transport) in \(\tilde{O}(1/\epsilon)\) passes and \(O(n)\) space. Lower bounds for finding stationary points I, Accelerated Methods for NonConvex Optimization, SIAM Journal on Optimization, 2018 (arXiv), Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification. Janardhan Kulkarni, Yang P. Liu, Ashwin Sah, Mehtaab Sawhney, Jakub Tarnawski, Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao, FOCS 2021 Research Institute for Interdisciplinary Sciences (RIIS) at ", "About how and why coordinate (variance-reduced) methods are a good idea for exploiting (numerical) sparsity of data. I am currently a third-year graduate student in EECS at MIT working under the wonderful supervision of Ankur Moitra. We will start with a primer week to learn the very basics of continuous optimization (July 26 - July 30), followed by two weeks of talks by the speakers on more advanced . ", "A new Catalyst framework with relaxed error condition for faster finite-sum and minimax solvers. Yang P. Liu, Aaron Sidford, Department of Mathematics A nearly matching upper and lower bound for constant error here! [last name]@stanford.edu where [last name]=sidford. Follow. Associate Professor of . Semantic parsing on Freebase from question-answer pairs. with Arun Jambulapati, Aaron Sidford and Kevin Tian with Aaron Sidford Annie Marsden, Vatsal Sharan, Aaron Sidford, and Gregory Valiant, Efficient Convex Optimization Requires Superlinear Memory. Contact: dwoodruf (at) cs (dot) cmu (dot) edu or dpwoodru (at) gmail (dot) com CV (updated July, 2021) Optimization Algorithms: I used variants of these notes to accompany the courses Introduction to Optimization Theory and Optimization . I maintain a mailing list for my graduate students and the broader Stanford community that it is interested in the work of my research group. International Conference on Machine Learning (ICML), 2021, Acceleration with a Ball Optimization Oracle Annie Marsden. xwXSsN`$!l{@ $@TR)XZ( RZD|y L0V@(#q `= nnWXX0+; R1{Ol (Lx\/V'LKP0RX~@9k(8u?yBOr y International Conference on Machine Learning (ICML), 2020, Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG Allen Liu. en_US: dc.format.extent: 266 pages: en_US: dc.language.iso: eng: en_US: dc.publisher: Massachusetts Institute of Technology: en_US: dc.rights: M.I.T. Np%p `a!2D4! sidford@stanford.edu. Before joining Stanford in Fall 2016, I was an NSF post-doctoral fellow at Carnegie Mellon University ; I received a Ph.D. in mathematics from the University of Michigan in 2014, and a B.A. Thesis, 2016. pdf. I am particularly interested in work at the intersection of continuous optimization, graph theory, numerical linear algebra, and data structures.
Is There Sales Tax On Home Improvements In Pa,
Glacier Bay Power Flush Toilet Parts,
Articles A